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An Efficient and Privacy-Preserving Disease Risk
Prediction Scheme for E-Healthcare
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Abstract—Big data mining-driven disease risk prediction has
become one of the important topics in the field of e-healthcare.
However, without the security and privacy assurances, disease
risk prediction cannot continue to flourish. To address this chal-
lenge, in this paper, an efficient and privacy-preserving disease
risk prediction scheme for e-healthcare is proposed, hereafter
referred to as EPDP. Compared with the up-to-date works, the
proposed EPDP comprehensively achieves two phases of dis-
ease risk prediction, i.e., disease model training and disease
prediction, while ensuring the privacy preservation. Specifically,
a super-increasing sequence is combined with a homomorphic
cryptographic algorithm to efficiently extract the symptom set of
each disease in the phase of disease model training. Bloom filter
technique is introduced to compute the prediction result in the
phase of disease risk prediction. Besides, extensive performance
evaluations demonstrate that our proposed EPDP attains out-
standing efficiency advantage over the state-of-the-art in terms
of both computational and communication overheads, and hence
our EPDP is more suitable for real-time e-healthcare, especially
medical emergency.
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I. INTRODUCTION

W ITH the rapid development of wireless sensors, smart
devices and network technologies, the Internet of

Things (IoT), as it can greatly improve the quality of life, has
played an important role in the modern society [1]. As one
of the major applications in IoT, e-healthcare has been widely
researched since it has advantages in prevention and easy mon-
itoring of diseases, ad hoc diagnosis and providing prompt
medical attention in cases of accidents [2], [3]. E-healthcare
includes many research fields, among which the extensive one
is disease risk prediction as it can help to predict the disease
risk and improve the diagnosis efficiency. Thus, in this paper,
we focus on this popular research field.

In general, the disease risk prediction mainly consists of
two phases: 1) disease model training and 2) remote disease
prediction [4], [5]. In the phase of disease model train-
ing, a huge number of historical medical data containing
patients’ symptoms and confirmed diseases are collected by
the resource-abundant third party, e.g., the cloud platform
(CP), and then the training result is extracted from the col-
lected data by means of big data mining technologies [6], [7].
After that healthcare providers (HPs), e.g., hospital or medi-
cal company, utilize the training result to predict the disease
risk for undiagnosed patients based on the personal symp-
toms collected by medical monitoring devices or doctor visits.
That is, in the whole process of disease risk prediction, con-
firmed patients provide their historical medical data for disease
model training, while undiagnosed patients can use the disease
prediction service to obtain the possible diseases by provid-
ing the collected symptoms. Unfortunately, as shown in most
e-healthcare researches [8]–[11], security and privacy issues
have significantly impeded the wide adoption of e-healthcare
systems, since the exposure and abuse of personal health
information (PHI) would bring about serious privacy leak-
age, let alone the involvement of not fully trusted third-party
CPs [12], [13].

In principle, a promising disease risk prediction system
should provide the following desirable properties.

1) Comprehensiveness: The disease risk prediction needs to
provide the disease model training and remote disease
prediction, simultaneously [14], [15].
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2) Privacy-Preservation: The privacy-preservation is a
decisive factor influencing the flourish of a disease risk
prediction system [16], [17]. Naturally, if the privacy
issue is not well addressed, confirmed patients would
not like to provide their PHI for training. Meanwhile,
undiagnosed patients would not use the prediction
service.

3) Efficiency: Whether a disease risk prediction system
can be applied to the practice greatly depends on the
efficiency [18], [19]. For example, we consider an emer-
gency scenario that a user suddenly fainted at home.
In order to take proper first-aid measures, the personal
symptoms collected by medical monitoring devices can
be sent to the HP to obtain the disease prediction in
time. Therefore, the response should be as fast as pos-
sible, i.e., the computational cost and communication
overhead should be efficient.

Although many up-to-date disease risk prediction schemes
have been proposed [20]–[22], they cannot meet all of the
above requirements. Up to now, designing an efficient, com-
prehensive and privacy-preserving scheme for disease risk
prediction remains a research challenge. Therefore, in this
paper, we propose an efficient and privacy-preserving disease
risk prediction scheme for e-healthcare, hereafter referred to as
EPDP. The main contributions of this paper are three aspects.

1) We consider the comprehensive disease risk prediction
system that includes the disease model training and
remote disease prediction. Specifically, in the disease
model training, we use the historical medical data
collected from confirmed patients to train the naïve
Bayesian classifier [23]. Then, the trained classifier can
be used to extract the symptom vector set of each dis-
ease. Based on the extracted training results, our EPDP
can help undiagnosed patients to predict the disease by
using the efficient Bloom filter (BF) technique [24] in
the phase of disease prediction.

2) Our EPDP achieves the privacy requirements of medical
users (MUs) and the HP. In more details, since histori-
cal medical data are sensitive information for confirmed
patients, each confirmed patient encrypts the historical
medical data by the Okamoto–Uchiyama (OU) cryp-
tosystem [25] before outsourcing. In the phase of disease
prediction, in order to protect the privacy from dis-
closure, both the HP and undiagnosed patient use the
keyed-cryptographic hash function to generate the BF
and query element, respectively.

3) To ensure the efficiency of disease risk prediction
system, our EPDP introduces a super-increasing
sequence [26] to greatly reduce the encryption times
and communication overhead. Specifically, instead of
encrypting each dimension of multidimensional his-
torical data one by one [27], in our EPDP, each
confirmed patient can use this sequence to compress
multidimensional historical data into 1-D, and then
encrypts the compressed data by the OU cryptosystem.
Besides, using the BF to complete the disease diag-
nosis can also greatly improve the efficiency. Further,
extensive performance evaluations demonstrate that our

EPDP attains outstanding efficiency advantage over the
state-of-the-art in terms of both computational and com-
munication overhead.

The remainder of this paper is organized as follows. We
formalize the models and design goals in Section II. Then,
we outline the definitions of OU cryptosystem and the BF
technology in Section III. After that, we describe the proposed
scheme in Section IV, followed by its privacy analysis and
performance evaluation in Sections V and VI, respectively. We
review some related works in Section VII. Finally, we draw
our conclusions in Section VIII.

II. MODELS AND DESIGN GOALS

In this section, we formalize the system model and threat
model used in this paper and identify our design goals.

A. System Model

The system model (see Fig. 1) is compromised of a CP,
a number of MUs and an HP. Similar to [27], we assume
that there are ns symptom attributes (X1, X2, . . . , Xns) and nd

disease classes (Y1, Y2, . . . , Ynd ) in the system. The role of
each entity is described as follows.

1) MUs: MUs act as either confirmed patients or undi-
agnosed patients. For each confirmed patient ui, he
or she has an ns-dimensional symptom vector xi =
(xi

1, . . . , xi
ns

) and the corresponding nd-dimensional con-
firmed disease vector yi = (yi

1, . . . , yi
nd

), where xi
j, yi

k ∈
{0, 1} for j = 1, . . . , ns and k = 1, . . . , nd. In partic-
ular, xi

j = 1 means that ui has the symptom attribute
Xj, and xi

j = 0 otherwise. yi
k = 1 means that ui suf-

fers from the disease Yk, and yi
k = 0 otherwise. Besides,

in order to help the HP train the naïve Bayesian clas-
sifier, ui needs to generate an nsnd-dimensional vector
zi = (zi

11, zi
21, . . . , zi

ns1, . . . , zi
nsnd

), where zi
jk = xi

j · yi
k.

Thus, each confirmed patient ui needs to provide the his-
torical medical data xi, yi, and zi to the HP for disease
model training. As an undiagnosed patient, he or she
has an undiagnosed symptom vector b = (b1, . . . , bns)

collected by body medical sensors and wants to obtain
the prediction result regarding b from the CP.

2) CP: CP is responsible for helping the HP collect the
historical medical data from confirmed patients while
predicting the disease for undiagnosed patients on the
behalf of the HP.

3) HP: HP, e.g., a hospital or a medical company, pro-
vides the service of disease risk prediction. Specifically,
with the help of the CP, the HP can obtain the training
data of the naïve Bayesian classifier, which can be used
to extract the symptom set of each disease including
all symptom vectors that may cause patients to suffer
from the corresponding disease. Considering the bene-
fit of the CP, the HP also would like to delegate the
CP to efficiently predict diseases and return the result to
undiagnosed patients.

As shown in Fig. 1, the overall workflow of our scheme
mainly contains two phases. The first phase is the disease
model training, where the HP delegates the CP to collect the
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Fig. 1. System model under consideration.

historical medical data from confirmed patients, and then trains
the naïve Bayesian classifier. The second phase is the dis-
ease risk prediction, where the HP outsources the prediction
service to the CP to help undiagnosed patients predict the pos-
sible diseases. Specifically, in the first phase, each confirmed
patient ui encrypts the historical medical data xi, yi, and zi,
and then sends the encrypted data to the CP. After receiv-
ing l historical medical data, the CP performs the aggregation
operation and forwards the aggregated data to the HP. Finally,
the HP decrypts the received data to compute the probabilities
of the naïve Bayesian classifier. After obtaining the probabil-
ities, the HP generates the BFk for each disease Yk, and then
outsources BFk together with the encrypted name CYk to the
CP for risk prediction. In the second phase, an undiagnosed
patient generates the encrypted query based on the undiag-
nosed symptom vector b and sends it to the CP for predicting
the possible diseases. Based on the received query, the CP can
judge whether this patient suffers from the disease CYk by per-
forming the membership query of BFk. Finally, the CP returns
the encrypted prediction result including the possible disease
names to this patient.

B. Threat Model

In our threat model, the CP is considered as honest-but-
curious, which strictly follows the underlying scheme, but
is interested in the privacy of MUs and the HP. Similar
to [27] and [28], we consider both HP and MUs as honest-but-
curious. Specifically, the HP provides the correct information
for disease risk prediction, but is curious about the privacy
of MUs, i.e., historical medical data or predicted disease. If
the HP obtains a patient’s disease history, in addition to using
them for disease model training, it is likely to obtain monetary
benefits by selling that information to some related companies,
e.g., the insurance company and employers. MUs provide cor-
rect medical data for disease model training or disease risk
prediction, but also attempt to know the training results, which
is regarded as intellectual properties of the HP. Besides, MUs
also attempt to know other patients’ medical data with the
same reason as the HP and CP.

Note that there may be other attacks and security
requirements, e.g., collusion attack and access control, in

e-healthcare. Since our objective is on the privacy-preserving
disease risk prediction, those attacks and security requirements
are currently out of scope for this article and will be considered
in future work.

C. Design Goals

Under the aforementioned models, the design goals of our
EPDP are described as follows.

1) Privacy-Preservation: Any adversary including the CP,
the HP or MUs cannot feasibly obtain the sensitive data
of other entities based on the obtained data. Specifically,
as the profit company, the training results are considered
as the HP’s own asset, which should be protected from
disclosing. In other words, although the CP can perform
the disease risk prediction on the behalf of the HP, it
cannot obtain the training results. Besides, even though
MUs provide medical data, they cannot obtain the train-
ing results from disease model training or disease risk
prediction. For MUs, the medical data (especially the
suffered disease) are extremely sensitive information,
thus they may refuse to provide the medical data or use
the service of disease prediction without the good pro-
tection of privacy. That is, the proposed system should
also achieve the privacy preservation for MUs.

2) Efficiency: Although the CP has the powerful computa-
tional capacity to deal with time-consuming calculations,
the computational efficiency is still expected to be
improved for time-sensitive e-healthcare, especially in
the case of the medical emergency that needs to retrieve
diagnosis results in time. Meanwhile, our EPDP should
ensure that the CP can independently make the judg-
ment without interaction. Moreover, the HP and MUs
outsource time-consuming calculations to the CP, but
before outsourcing the data, they have to perform some
calculations to protect the privacy. Hence, the corre-
sponding computing should be efficient, especially for
the capacity-limited mobile MUs. Besides, the com-
munication overhead is an important factor influencing
the delay, thus we need to reduce the communication
overheads as much as possible.
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III. PRELIMINARY

In this section, we outline the OU cryptosystem [25] and
BF [24], which serve as the building blocks of our EPDP. The
details are shown as follows.

A. Okamoto–Uchiyama Cryptosystem

The OU cryptosystem mainly includes three algorithms:
1) key generation; 2) encryption; and 3) decryption.

1) Key Generation: Given the security parameter κ , choose
two large primes p and q with the same bit-length |p| =
|q| = κ , and compute N = p2q. Then, choose g ∈ Z

∗
N

such that the order of gp−1 mod p2 is p, and set g1 =
gN mod N. The public key is pk = (N, g, g1, κ) and the
corresponding private key is sk = (p, q).

2) Encryption: Given the message 0 ≤ m < 2κ−1, choose
a random number r ∈ ZN , then the ciphertext can be
computed as

C = E(m) = gm · gr
1 mod N. (1)

3) Decryption: For a ciphertext C ∈ ZN , the message m
can be recovered with the private key as

D(C) =
((

Cp−1 mod p2
) − 1

p

)
· α−1 mod p (2)

where α = [((gp−1 mod p2)−1)/p] mod p. The correct-
ness of the OU cryptosystem can be referred to [25].

Besides, the OU cryptosystem supports the additive
homomorphism

D(E(m1) · E(m2) mod N) = D
(

gm1+m2 gr1+r2
1 mod N

)
= D(E(m1 + m2))

where m1 + m2 < 2κ−1.
Note that, in addition to the OU cryptosystem, the Paillier

cryptosystem [29] has also been widely applied in ciphertext-
based operation applications [30]–[32]. However, with the
same security parameter, e.g., |p| = |q| = 512 bits, the mes-
sage space and ciphertext space of Paillier cryptosystem are,
respectively, 1024 bits and 2048 bits, while the message space
and ciphertext space of the OU cryptosystem are, respec-
tively, around 512 bits and 1536 bits. As a result, for some
applications with small space, it is better to choose the OU
cryptosystem. In our scheme, since the plaintext is relatively
small, we adopt the OU cryptosystem, which can reduce the
encryption and decryption costs as well as the communication
overhead.

B. Bloom Filter

The BF is a space-efficient data structure for representing
a set and testing whether an element is definitely not or pos-
sibly in this set. Specifically, a BF is initialized by InitBF(L)

to generate an array of L bits, where all bits are set to 0
(see Fig. 2).

The BF mainly contains two operations: 1) element addi-
tion and 2) membership query. Specifically, to add an element
or query whether an element is in the set, the BF chooses
f independent hash functions {h1, h2, . . . , hf }, each of which

Fig. 2. Example of a BF initialized by InitBF(11) and using three hash
functions {h1, h2, h3}. Each element xi can be added in the set by executing
AddBF(xi). We can check whether an element yi is in the set by calling
QueryBF(yi). Specifically, since a 0 is found at the ninth bit, y1 cannot be
in the set. The element y2 is either in the set or the filter has yielded a false
positive.

uniformly maps the element to one of L array positions, i.e.,
hi : {0, 1}∗ → {1, 2, . . . , L} for i = 1, 2, . . . , f .

1) Element Addition AddBF(x): In order to add an element
x in a set, f array positions in bit array are computed
as {h1(x), h2(x), . . . , hf (x)}. Then, set the hi(x)-th bit in
the array to 1 for i = 1, 2, . . . , f . It is worth noting that
a bit location can be set to 1 multiple times, but only
the first change has an effect.

2) Membership Query QueryBF(y): To query whether an
element y is included in the set, check the value of the
hi(y)-th bit in the array for i = 1, 2, . . . , f . The result of
QueryBF(y) is either 1 or 0, i.e., QueryBF(y) → {0, 1}.
Specifically, if any of the bits at f positions is 0, then
return 0, which means that the element y is definitely
not in the set. If all are 1, then return 1, which means
that either the element y is in the set, or the bits have
by chance been set to 1 during the addition of other
elements, resulting in a false positive [33].

Particularly, if n elements have been added into the BF,
and each element is mapped to the f positions with equal
probability, the false positive probability P is calculated as

P =
(

1 − (1 − 1/L)fn
)f ≈

(
1 − e−fn/L

)f
(3)

which can be minimized when f = (L/n) ln 2. Fig. 2 provides
an example of BF.

IV. PROPOSED SCHEME

In this section, we present our EPDP, which mainly consists
of the following three phases: 1) system initialization; 2) dis-
ease model training; and 3) disease risk prediction. Before
that, we would like to describe the notations in the proposed
scheme in Table I.

A. System Initialization

The HP initializes the system as follows.
1) Take the security parameter κ0 as input, and output the

OU parameters (N, g, g1, κ0, p, q) by running the cor-
responding key generation algorithm, where the public
key is pk = (N, g, g1, κ0) and the corresponding private
key is sk = (p, q).
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TABLE I
NOTATIONS USED IN THE PROPOSED SCHEME

2) Choose a symmetric encryption algorithm, e.g., AES-
256 in this paper, where the symmetric key λ is
randomly chosen from the key space λ ∈ {0, 1}κ1 .

3) Choose a keyed-cryptographic hash function
H(λ, ·) : {0, 1}∗ → {0, 1}κ2 , where κ2 is the bit
length of the hash value. To this end, we can use keyed-
hashing for message authentication code (HMAC)
technique [34].

4) Choose a super-increasing sequence vector a = (a1 =
1, a2, . . . , ansnd ), where a2, . . . , ansnd are integers such
that

∑i−1
j=1 aj·l < ai for i = 2, . . . , nsnd, and

∑nsnd
i=1 ai·l <

2κ−1. Note that ns, nd, and l represent the number
of symptom attributes, disease classes, and confirmed
patients, respectively. With this sequence, we can com-
press multidimensional data into the 1-D, and then
reconstruct each dimension of the multidimensional data
from this compressed data. Specifically, in the dis-
ease model training, each confirmed patient uses this
sequence to compress the multidimensional historical
data into 1-D and encrypts the compressed data by
the OU cryptosystem, which can greatly reduce the
encryption times and the corresponding communication
overhead.

5) Set an appropriate value for the BF’s length L and
choose f independent hash functions {h1, h2, . . . , hf }
such that hi : {0, 1}∗ → {1, 2, . . . , L} for i = 1, 2, . . . , f .
For each disease Yk, initialize the corresponding filter
BFk by executing InitBFk(L).

In the end, HP publishes the system parameters as
(N, g, g1, κ0, a, H, h1, h2, . . . , hf ) and keeps (p, q, λ) secret.

B. Privacy-Preserving Disease Model Training

In this section, we introduce the details about the privacy-
preserving disease model training, which mainly contains four
parts: 1) historical data encryption; 2) ciphertext aggrega-
tion; 3) decryption; and 4) extraction of the symptom set.
Specifically, l confirmed patients {u1, u2, . . . , ul} encrypt the

historical medical data by the OU encryption algorithm E(·),
and send these encrypted data to the CP. After receiving these
encrypted data, the CP aggregates them and forwards the
aggregated data to the HP for computing the probabilities of
naïve Bayesian classifier. Based on the trained results, i.e., the
probabilities of naïve Bayesian classifier, the HP can obtain
the BF of each disease, which represents the set containing all
symptom vectors that may cause the corresponding disease.
The details are shown below.

1) Historical Data Encryption: As described in
Section II-A, each confirmed patient ui, i = 1, 2, . . . , l, needs
to provide three vectors xi = (xi

1, . . . , xi
ns

), yi = (yi
1, . . . , yi

nd
)

and zi = (zi
11, zi

21, . . . , zi
ns1, . . . , zi

nsnd
). In order to protect

the privacy, ui generates the ciphertexts with the HP’s public
parameters (N, g, g1, κ0, a) as follows.

1) ui uses the super-increasing sequence vector a to com-
press xi, yi, and zi into three plaintexts as follows:

Mi
1 = a1xi

1 + a2xi
2 + · · · + ans x

i
ns

(4)

Mi
2 = a1yi

1 + a2yi
2 + · · · + and yi

nd
(5)

Mi
3 = a1zi

11 + a2zi
21 + · · · + ansnd zi

nsnd
(6)

where Mi
1, Mi

2, Mi
3 < 2κ0−1, and the correctness of

message space will be described in Section IV-B3.
2) ui encrypts these three plaintexts by calling the encryp-

tion algorithm E(·)
Ci

1 = gMi
1 · g

ri
1

1 mod N (7)

Ci
2 = gMi

2 · g
ri
2

1 mod N (8)

Ci
3 = gMi

3 · g
ri
3

1 mod N (9)

where ri
1, ri

2, ri
3 ∈ ZN are random numbers.

3) ui sends (Ci
1, Ci

2, Ci
3) to the CP.

2) Ciphertext Aggregation: After receiving (Ci
1, Ci

2, Ci
3)

from l confirmed patients, the CP aggregates them as follows:

C1 =
l∏

i=1

Ci
1

= g
∑l

i=1 Mi
1 · g

∑l
i=1 ri

1
1 mod N

= ga1
∑l

i=1 xi
1+···+ans

∑l
i=1 xi

ns · g
∑l

i=1 ri
1

1 mod N

C2 =
l∏

i=1

Ci
2

= g
∑l

i=1 Mi
2 · g

∑l
i=1 ri

2
1 mod N

= ga1
∑l

i=1 yi
1+···+and

∑l
i=1 yi

nd · g
∑l

i=1 ri
2

1 mod N

C3 =
l∏

i=1

Ci
3

= g
∑l

i=1 Mi
3 · g

∑l
i=1 ri

3
1 mod N

= ga1
∑l

i=1 zi
11+···+ansnd

∑l
i=1 zi

nsnd · g
∑l

i=1 ri
3

1 mod N.

Then, the CP sends (C1, C2, C3) to the HP.
3) Decryption: After receiving (C1, C2, C3), the HP per-

forms the following steps to read the aggregated and encrypted
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Algorithm 1: Recover the Aggregated Report
Input: M = a1m1 + a2m2 + · · · + anmn and a

super-increasing sequence a = (a1 = 1, · · · , an)

with
∑i−1

j=1 ajmj < ai for i = 2, . . . , n.
Output: (m1, m2, . . . , mn).
Set tn = M;
for i = n to 2 do

ti−1 = ti mod ai;
mi = ti−ti−1

ai
;

m1 = t1;
return (m1, m2, . . . , mn);

report (C1, C2, C3). In order to facilitate the description, we
use C1 as an example. Specifically, C1 is formed by

C1 = ga1
∑l

i=1 xi
1+···+ans

∑l
i=1 xi

ns · g
∑l

i=1 ri
1

1 mod N.

Step 1: By taking M1 = a1
∑l

i=1 xi
1 + · · · + ans

∑l
i=1 xi

ns

and r1 = ∑l
i=1 ri

1, the report C1 = gM1 gr1
1 mod N is still a

ciphertext of OU cryptosystem. Therefore, the HP runs D(·)
algorithm with the private key sk = (p, q) to recover M1 as

M1 = D(C1) =
((

C1
p−1 mod p2

) − 1

p

)
· α−1 mod p

where α = [((gp−1 mod p2) − 1)/p] mod p.
Step 2: Given the inputs (a1, a2, . . . , ans) and M1, by invok-

ing Algorithm 1, the HP can recover and store the aggregated
data (x1, x2, . . . , xns), where xj = ∑l

i=1 xi
j for j = 1, 2, . . . , ns.

The Correctness of Data Recovery: We analyze the correct-
ness of both steps as follows.

1) The Correctness of Step 1: Since xi
j ∈ {0, 1}, xj =∑l

i=1 xi
j ≤ l for j = 1, 2, . . . , ns. We can obtain

M1 = a1x1 + a2x2 + · · · + ansxns

≤ a1l + a2l + · · · + ans l

=
ns∑

i=1

ail.

As defined in Section IV-A,
∑i−1

j=1 ajl < ai for i =
2, . . . , nsnd, and

∑nsnd
i=1 ail < 2κ0−1, so we have∑ns

i=1 ail < ans+1 <
∑nsnd

i=1 ail < 2κ0−1. That is, the data
M1 meets the message space of encryption algorithm
E(·), and can be correctly decrypted by running D(·).

2) The Correctness of Step 2: Since
∑i−1

j=1 ajxj <
∑i−1

j=1 aj ·
l < ai, based on the correctness analysis of Algorithm 1,
the data (x1, x2, . . . , xns) can be correctly recovered.

Similarly, the HP can obtain the aggregated data
(y1, y2, . . . , ynd ) and (z11, z12, . . . , znsnd ) from C2 and C3,
respectively, where yk = ∑l

i=1 yi
k and zjk = ∑l

i=1 xi
j · yi

k, for
j = 1, . . . , ns, k = 1, . . . , nd.

The Correctness of Algorithm 1: In Algorithm 1, tn = M,
since

∑i−1
j=1 ajmj < ai, we have

a1m1 + a2m2 + · · · + an−1mn−1 < an.

Therefore, tn−1 = tn mod an = a1m1 + · · · + an−1mn−1, and
tn − tn−1

an
= anmn

an
= mn.

With the similar procedure, we can also prove each mi for
i = 1, 2, . . . , n − 1. The details can be referred to [26].

4) Extraction of Symptom Vector Set: In this section, we
present the details about how to extract the symptom vector
set including all symptom vectors that may cause patients to
suffer from the corresponding disease. It is worth noting that
this operation is performed by the HP, so all data is processed
in plaintext form.

With the data (x1, x2, . . . , xns), (y1, y2, . . . , ynd ), and
(z11, z12, . . . , znsnd ), the HP computes probabilities of the
naïve Bayesian classifier as follows:

Pr(Xj = 1|Yk = 1) = zjk

yk

Pr(Xj = 1|Yk = 0) = xj − zjk

l − yk

Pr(Yk = 1) = yk

l
Pr(Yk = 0) = 1 − Pr(Yk = 1)

Pr(Xj = 0|Yk = 1) = 1 − Pr(Xj = 1|Yk = 1)

Pr(Xj = 0|Yk = 0) = 1 − Pr(Xj = 1|Yk = 0)

where {X1, . . . , Xns} and {Y1, . . . , Ynd } denote ns symptom
attributes and nd disease types, respectively. Additionally,
Xj = 1 denotes a patient satisfies the symptom Xj, and Xj = 0
otherwise. Yk = 1 denotes a patient suffers from the disease
Yk, and Yk = 0 otherwise. Note that Pr(Xj|Yk) and Pr(Yk),
where j = 1, 2, . . . , ns and k = 1, 2, . . . , nd, should be kept
privately by HP as its own asset.

For each disease Yk, k = 1, 2, . . . , nd, the HP can
generate the corresponding BFk by executing Algorithm 2.
Specifically, when the dimension of the binary vector is ns,
there exist 2ns possible binary vectors in total, denoted as
wi = (wi1, wi2, . . . , wins), i = 1, 2, . . . , 2ns . For each binary
vector wi = (wi1, . . . , wins), based on the training results
Pr(Xj|Yk) and Pr(Yk), j = 1, 2, . . . , ns, k = 1, 2, . . . , nd, and
Bayes’s theorem [35], the HP can use (10) and (11) to compute
the probability of having the disease Yk and the probability
without suffering from the disease Yk, respectively, i.e., βk

1
and βk

0. If βk
1 > βk

0 (i.e., the probability of having the disease
is larger than the probability without suffering the disease),
then it implies that a patient with wi may suffers from the
disease Yk. Thus, wi can be added to the BFk by executing
AddBFk(H(λ, μi)), where λ is the HP’s private key and μi

is the decimal number of the binary vector wi. After the HP
has tried 2ns binary vectors, it can obtain the final BFk that
includes all symptom vectors corresponding to the disease Yk.

According to each BFk for k = 1, 2, . . . , nd, we can see
that determining whether an undiagnosed patient may suffer
from the disease Yk is equivalent to querying whether an ele-
ment (i.e., undiagnosed vector in this paper) is in the set (i.e.,
symptom vector set BFk). In other words, the disease diag-
nosis is equivalent to the membership query in the BF. Next,
in order to save the overheads of storage and computation,
the HP would like to delegate the CP to efficiently diagnose
diseases and return the result to undiagnosed patients on his
behalf. To this end, besides the BFk, the HP also needs to out-
source the corresponding disease name Yk to the CP. In order
to protect the privacy, the HP encrypts the disease name Yk
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Algorithm 2: Extraction of Symptom Vector Set
Input: All ns-dimensional binary vectors

wi = (wi1, . . . , wins), i = 1, 2, . . . , 2ns .
Output: Bloom filter BFk, which contains all symptom

vectors that may cause patients to suffer from
the disease Yk.

Initialize BFk by executing InitBFk(L);
for i = 1 to 2ns do

compute the probability of having the disease Yk:

βk
1 =

ns∏
j=1

Pr
(
wij = Xj|Yk = 1

) · Pr(Yk = 1) (10)

where Pr
(
wij = Xj|Yk = 1

) = wij Pr(Xj = 1|Yk =
1) + (1 − wij) Pr(Xj = 0|Yk = 1);
compute the probability without suffering from the
disease Yk:

βk
0 =

ns∏
j=1

Pr
(
wij = Xj|Yk = 0

) · Pr(Yk = 0) (11)

where Pr
(
wij = Xj|Yk = 0

) = wij Pr(Xj = 1|Yk =
0) + (1 − wij) Pr(Xj = 0|Yk = 0) ;
if βk

1 > βk
0 then

compute wi’s decimal value μi ;
based on the private key λ, compute H(λ, μi);
execute AddBFk(H(λ, μi));

return Bloom filter BFk of the disease Yk;

before outsourcing as

CYk = SE(λ, Yk) (12)

where SE(λ, ·) is the symmetric encryption algorithm with the
key λ, e.g., AES algorithm used in this paper.

Finally, the HP outsources each tuple (BFk, CYk), k =
1, 2, . . . , nd, to the CP for storing and disease prediction.

5) Data Update Discussion: In the practical scenario, data
update is frequent and can help improve the accuracy of the
classifier. Our scheme can also deal with the data update.
Specifically, the CP initially sets an appropriate value for l,
and then performs the aggregation each time after receiving l
historical data. Note that l is usually set to be relatively large,
since it will hardly affect the update of the training model
when l is small. In other words, if the CP only received one
historical data, it will not forward it to the HP, which can also
help to protects the privacy of the individual confirmed patient.
After receiving the new aggregated data, the HP recalculates
the probabilities of naïve Bayesian classifier, and then updates
the BFk for each disease Yk based on Algorithm 2. Since the
HP performs these update operations in the plaintext domain,
the computational efficiency can be guaranteed.

C. Privacy-Preserving Disease Risk Prediction

In this section, we describe the privacy-preserving disease
risk prediction, which includes four parts: 1) member registra-
tion; 2) encrypted query generation; 3) disease risk diagnosis;

and 4) prediction result retrieving. Before that, in order to
prevent the medical data of an undiagnosed patient from being
guessed by other patients, the CP chooses a secure public-
key cryptosystem (e.g., RSA-OAEP cryptosystem [36]), where
(PKCP, SKCP) is the public and private key pair, EPKCP(·)
and DSKCP(·) are the corresponding encryption and decryption
algorithms, respectively. The details are shown as follows.

1) Member Registration: Suppose an undiagnosed user uc

has the vector b = (b1, b2, . . . , bns), where bi ∈ {0, 1} for
i = 1, 2, . . . , ns, and wants to know the possible diseases. In
order to leverage the service of disease risk prediction provided
by the HP, uc first needs to register as a member of the HP.
Then, the HP would send the secret key λ to the registered
member uc by the secure channel.

2) Encrypted Query Generation: With the obtained secret
key λ, uc can compute the query element as H(λ, ϕ), where ϕ

is the decimal value of the undiagnosed binary vector b. Then,
uc randomly chooses a κ1-bit string Kuc , i.e., Kuc ∈ {0, 1}κ1 ,
and computes the encrypted query as

Cuc = EPKCP

(
H(λ, ϕ)‖Kuc

)
.

Note that Kuc is a secret key selected by uc to protect the
prediction result from disclosure. Finally, uc sends Cuc to the
CP for disease risk diagnosis.

3) Disease Risk Diagnosis: After receiving the Cuc , the CP
can obtain the query element H(λ, ϕ) and the uc’s secret key
Kuc by performing the decryption algorithm DSKCP(Cuc). Then,
with the query element H(λ, ϕ), the CP obtains the prediction
result by executing Algorithm 3. More precisely, for each
tuple (BFk, CYk), k = 1, 2, . . . , nd, the CP checks whether
uc may suffer from the corresponding disease by performing
the membership query operation QueryBFk(H(λ, ϕ)).

a) If QueryBFk(H(λ, ϕ)) → 0, it means that ϕ is not in
BFk. Since each binary vector corresponds to the unique
decimal value, b is not included in the set represented
by BFk. That is, uc may not suffer from this disease.

b) If QueryBFk(H(λ, ϕ)) → 1, it implies that uc may suf-
fer from this disease. Thus, the CP adds the encrypted
disease name CYk to the diagnosis result set S. Note that
in this case, the BF may yield a false positive result, but
we can minimize it by setting the appropriate parameters
L and f [see (3)].

After checking for nd diseases, the CP obtains the final
prediction result set S including all encrypted disease names
that uc may suffer. In order to prevent the content of the
encrypted disease name in S from being guessed by other
patients, the CP encrypts the set S with uc’s secret key Kuc as
follows.

a) For each CYk ∈ S, compute

C∗
Yk

= SE
(
Kuc , CYk

)
where SE(Kuc , ·) is the symmetric encryption algorithm with
the key Kuc , e.g., AES algorithm. We use S∗ to represent the
encrypted set S. Then, the CP returns the set S∗ to uc.

In addition, the CP can help the HP to collect the statistics
based on the prediction results. Specifically, the CP can know
how many undiagnosed patients are likely to suffer from the
disease labeled k. For example, if the encrypted name CYk is
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Algorithm 3: Disease Prediction Algorithm

Input: The query element H(λ, ϕ) and
(
BFk, CYk

)
for

k = 1, 2, . . . , nd.
Output: Diagnosis result set S that includes all possible

diseases.
Initialize S to an empty set, i.e., S = ∅;
for k = 1 to nd do

execute QueryBFk(H(λ, ϕ));
if QueryBFk(H(λ, ϕ)) → 1 then

add CYk to the set S, i.e., S = S ∪ {CYk};
return the set S;

included in a patient’s prediction result set (i.e., CYk ∈ S), the
number of people with the disease labeled k is increased by 1.
With these statistics, the HP can give some useful suggestion to
the relevant institutions, for example, if the number of people
with the disease Yk is higher, then it can suggest the pharmacy
to prepare more related drugs. The detailed statistics will be
illustrated in Section VI-C2.

4) Prediction Result Retrieving: After receiving the
prediction result S∗, for each C∗

Yk
∈ S∗, uc decrypts it with the

secret key Kuc to obtain CYk , and then decrypts the CYk with
the secret key λ to obtain the corresponding disease name Yk.
Note that if S∗ is an empty set, it means that uc may not suffer
from any disease. After that, uc can decide whether he or she
needs to consult some specific type of doctors or specialists
to follow their recommendations.

V. PRIVACY ANALYSIS

In this section, we analyze the privacy properties of our
EPDP, focusing on how our EPDP can achieve the privacy
preservation of MUs and the HP.

A. Privacy-Preservation of MUs

In this section, we discuss the privacy-preservation of
confirmed patients and undiagnosed patients, respectively.

1) Privacy-Preservation of Confirmed Patients: In the
phase of disease model training, confirmed patients need to
provide the historical medical data. Specifically, each con-
firmed patient ui (i = 1, 2, . . . , l) first encrypts xi, yi, and
zi by using the OU encryption algorithm E(·), respectively,
and then sends the ciphertexts (Ci

1, Ci
2, Ci

3) to the CP by the
secure channel. Because the OU cryptosystem is IND-CPA
secure, the CP cannot obtain any plaintext from the obtained
ciphertext without the private key of OU cryptosystem.

After l encrypted data have been received, the CP aggre-
gates them and then forwards the aggregated ciphertexts
(C1, C2, C3) to the HP. Once these aggregated ciphertexts
are received, the HP can decrypt them with the private key
to obtain the aggregated data, e.g.,

∑l
i=1 xi

j,
∑l

i=1 yi
k and∑l

i=1 xi
j ·yi

k for j = 1, 2, . . . , ns and k = 1, 2, . . . , nd. However,
the HP cannot recover the individual data, i.e., xi

j and yi
k for

j = 1, 2, . . . , ns and k = 1, 2, . . . , nd. The reason mainly

contains two aspects: on the one hand, since the communi-
cation between confirmed patients and the CP is assumed to
be secure, the HP cannot capture the communication informa-
tion, i.e., (Ci

1, Ci
2, Ci

3) for i = 1, 2, . . . , l. On the other hand,
the CP is honest-but-curious, which would strictly follow the
scheme, and thus the CP only sends the aggregated ciphertexts
(C1, C2, C3) rather than individual ciphertext (Ci

1, Ci
2, Ci

3) to
the HP. Therefore, the HP cannot obtain the historical medical
data of each confirmed patients even though it has the private
key. Note that we do not consider the collusion attack between
the CP and HP in this paper.

Similarly, the other patients cannot obtain the privacy of the
interested patient because they neither own the private key nor
obtain any communication information.

2) Privacy-Preservation of Undiagnosed Patients: In the
phase of disease risk prediction, undiagnosed patients want to
know whether they may suffer from some diseases by using
the service of disease risk prediction. In more details, an undi-
agnosed patient uc as a registered member of the HP first
generates the query element H(λ, ϕ) with the obtained secret
key λ. Then, uc generates the encrypted query Cuc with the
CP’s public key PKCP and sends it to the CP for disease diag-
nosis. Then, the CP can decrypt the Cuc with the private key
SKCP to obtain H(λ, ϕ). Naturally, the CP wants to obtain
uc’s privacy (i.e., the value ϕ) from the obtained information
H(λ, ϕ). However, since H(λ, ·) is the keyed-cryptographic
hash function, the CP cannot get the value ϕ from H(λ, ϕ)

without the secret key λ. After executing Algorithm 3, the
CP can get the prediction result S containing all encrypted
disease names that the patient may suffer. Since each disease
name is encrypted by the symmetric encryption algorithm (i.e.,
AES used in this paper), the CP cannot obtain the plaintext
without the symmetric key λ. Therefore, the CP can obtain nei-
ther the undiagnosed symptom vector nor the possible suffered
diseases for undiagnosed patients.

In addition, other registered patients may also try to know
the privacy of the uc. Specifically, since other registered
patients also have the secret key λ, if they obtain H(λ, ϕ)

or CYk , then they can know what disease uc may suffer from,
i.e., Yk. However, as described in Section IV-C2, uc encrypts
H(λ, ϕ) through a secure public-key encryption algorithm
EPKCP(·), e.g., RSA-OAEP. Thus, due to the CCA security
of the RSA-OAEP, other registered patients cannot decrypt
the ciphertext Cuc to obtain H(λ, ϕ) without the private key
SKCP. Similarly, since the prediction result is encrypted by
the symmetric encryption algorithm, e.g., AES, other regis-
tered patients cannot obtain CYk without uc’s secret key Kuc .
With the same reason, the HP also cannot obtain the sensitive
data of interested patients. As a result, our EPDP can protect
the privacy of undiagnosed patients from disclosure.

B. Privacy-Preservation of HP

In this section, we discuss how our proposed EPDP can pro-
tect the training results, i.e., the probabilities of naïve Bayesian
classifier, from disclosure. Specifically, in the phase of dis-
ease model training, the aggregated ciphertexts (C1, C2, C3)

are encrypted by the OU encryption algorithm, the CP and
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MUs cannot get the corresponding plaintexts without the pri-
vate key (p, q). That is, the CP and MUs cannot obtain the
probabilities of naïve Bayesian classifier. Besides, the CP can
obtain the BFk of each disease Yk from the HP, thus it wants to
obtain some useful information, i.e., the symptom vectors that
may cause patients to suffer from the disease Yk. Similar to the
above analysis, the CP cannot generate the valid hash value,
e.g., H(λ, μi), thus it cannot know the corresponding μi. In
other words, it cannot know which ns-dimensional binary vec-
tor is recognized as the symptom vector included in BFk. As
a result, our EPDP can protect the privacy of the HP from
disclosure.

VI. PERFORMANCE EVALUATION

In this section, we analyze the performance of the proposed
EPDP in terms of computational cost and communication
overhead and make the comparison with the PPCD [27].

A. Computational Cost

In this section, we theoretically analyze the computational
cost of our EPDP in terms of two phases, i.e., disease model
training and disease risk prediction, and compare it with the
PPCD [27].

For the sake of simplicity, we set TEO , TDO , and TaddO rep-
resent the computational costs of an encryption, a decryption
and an additive homomorphic operation in the OU cryptosys-
tem, respectively. We set Talg1, Talg2, Talg3, TSE, and TH

represent computational costs of Algorithms 1–3, AES algo-
rithm and HMAC, respectively. Besides, we use TER and TDR

to represent the computational costs of an encryption and
a decryption in the RSA-OAEP cryptosystem, respectively.
Since the PPCD [27] uses the bilinear pairing technology and
Paillier cryptosystem to protect the privacy, for convenience,
we use Te, Tp, Tet, and Tmt to represent the computational costs
of an exponentiation in G, a pairing operation, an exponenti-
ation in GT and a multiplication in GT , respectively. We also
use TEP , TDP , TaddP , and TmulP to represent the computational
costs of an encryption, a decryption, an additive homomorphic
operation and a scalar-multiplicative homomorphic operation
in the Paillier cryptosystem, respectively.

1) Computational Cost of Our EPDP: In the phase of dis-
ease model training, every confirmed patient generates three
ciphertexts by executing the encryption algorithm E(·), which
costs 3TEO . Thus, the computational costs for l confirmed
patients are 3l · TEO . Then, the CP aggregates l ciphertexts
into three aggregated data, which costs 3(l − 1) · TaddO . After
that, the HP decrypts three aggregated ciphertexts by calling
D(·), which spends 3TDO . Finally, the HP can obtain the aggre-
gated data by executing Algorithm 1, which costs 3 · Talg1.
After obtaining the probabilities of naïve Bayesian classifier,
for each disease Yk, the HP generates the corresponding BFk

by calling Algorithm 2. Thus, the costs for nd diseases are
nd · Talg2. Besides, in order to protect the privacy, the HP
encrypts each disease’s name through AES algorithm before
outsourcing. The corresponding costs are nd · TSE.

In the phase of disease risk prediction, a registered undiag-
nosed patient first generates the encrypted query Cuc , which

costs TH + TER . Then, the CP decrypts Cuc to obtain H(λ, ϕ),
and obtains the prediction result by calling Algorithm 3.
The corresponding costs are TDR + Talg3. After obtaining
the prediction result S, for each CYk ∈ S, the CP computes
C∗

Yk
= SE(Kuc , CYk). Thus, the total costs for |S| elements are

|S| · TSE. After obtaining the result S∗, for each C∗
Yk

∈ S∗, this
patient decrypts it with Kuc to obtain CYk , and then gets the
disease name Yk with λ by performing the AES decryption.
Thus, the corresponding costs are 2|S| · TSE.

2) Computational Cost of the PPCD [27]: In order to make
a comparison, we briefly describe the computational costs of
the PPCD [27]. In the phase of disease model training, l
confirmed patients first encrypt the historical data and send
them to the CP for aggregation, which cost l(ns + nd)(Te +
Tp + 3Tmt) + (2l + 1)(ns + nd)Tet. It is worth noting that the
HP uses the naïve Bayesian classifier to achieve the disease
diagnosis. Based on the definition of the naïve Bayesian clas-
sifier [23], [37], the conditional probability P(Xj = 1|Yk = 1)

is computed as

P
(
Xj = 1|Yk = 1

) =
∑l

i=1 xi
jy

i
k∑l

i=1 yi
k

. (13)

However, in the PPCD [27], the conditional probability is com-
puted as P(Xj = 1|Yk = 1) = ∑l

i=1 xi
j/

∑l
i=1 yi

k, which is not
precise. The reason is that when xi

j = 1, yi
k may be 0 or 1.

Thus, it is not precise for computing P(Xj = 1|Yk = 1) to
directly use

∑l
i=1 xi

j to replace the
∑l

i=1 xi
jy

i
k. Based on (13),

every confirmed patient should also encrypt nsnd data, i.e.,
E(xi

jy
i
k), for j = 1, 2, . . . , ns, k = 1, 2, . . . , nd. Hence, the

real computational costs of the disease model training are
l(ns +nd +nsnd)(Te +Tp +3Tmt)+ (2l+1)(ns +nd +nsnd)Tet.
In the phase of disease risk prediction, the Paillier cryp-
tosystem [29] has been used to realize the privacy-preserving
disease diagnosis. First, it requires ((8ns − 6)nd + ns)TEP +
(4ns − 4)nd · TDP + (14ns − 10)nd · TaddP + (12ns − 4)nd · TmulP
to calculate the disease risk of an undiagnosed patient. After
that, it costs 6nd · TEP + nd · TDP + 11nd · TaddP + 8nd · TmulP to
judge whether this patient suffers from some specific diseases.

3) Comparison: We present the comparison of computa-
tional cost for our EPDP and the PPCD [27] in Table II. From
the table, we can see that the computational costs of our EPDP
are less than that of the PPCD, which will be further shown
in our simulations in Section VI-C.

B. Communication Overhead

In this section, we theoretically analyze the communication
overhead of our EPDP, and then make a comparison with the
PPCD [27].

1) Communication Overhead of Our EPDP: In the phase
of disease model training, each confirmed patient sends
(Ci

1, Ci
2, Ci

3) to the CP. Since the security parameter of OU
cryptosystem is κ0 (see Section IV-A), the bit length of each
generated ciphertext is 3κ0. That is, each confirmed patient
spends 9κ0 bits in length to transmit the encrypted data.
Thus, the overheads for l confirmed patients are 9l · κ0 bits.
After receiving l encrypted data, the CP aggregates them and
forwards the aggregated ciphertexts (C1, C2, C3) to the HP,
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TABLE II
THEORETICAL COMPARISON OF COMPUTATIONAL COST

TABLE III
THEORETICAL COMPARISON OF COMMUNICATION OVERHEAD (BITS)

which costs 9κ0 bits to transmit. In the phase of disease risk
prediction, an undiagnosed patient sends the encrypted query
Cuc to the CP, which costs 2κ0 bits if we set the bit length of
the security parameter in RSA to the same as the OU cryp-
tosystem. After completing the disease risk diagnosis, the CP
sends the prediction result S∗ to this patient. Note that the ele-
ments in S∗ are ciphertexts generated by the AES algorithm,
thus the corresponding overheads are |S| · |Yk|, where |S| is the
number of the elements in the set S∗ (i.e., S) and |Yk| is the
bit length of disease name Yk.

2) Communication Overhead of the PPCD [27]: In the
phase of disease model training, the PPCD uses the bilinear
pairing technique to protect the privacy. In order to facili-
tate expression, we set |G| and |GT | denote the bit length
of the element in G and GT , respectively. Specifically, each
confirmed patient spends (ns + nd + nsnd) · (|G| + |GT |) bits
to transmit his or her encrypted historical medical data to
the CP under the correct calculations of the naïve Bayesian
classifier. Accordingly, the corresponding overheads for l con-
firmed patients are l(ns + nd + nsnd) · (|G| + |GT |) bits.
Then, the CP aggregates l data and sends them to the HP,
which costs (ns + nd + nsnd) · 2|GT | bits to transmit. In
the phase of disease risk prediction, an undiagnosed patient
sends ns ciphertexts encrypted by Paillier cryptosystem to
the HP via the CP, which costs 2ns · 4κ0 bits if we set the
security parameter of Paillier cryptosystem to κ0. Then, the
HP needs to interact with this patient to compute the dis-
ease risk, which costs (32ns − 16)nd · κ0 bits. After that,
the HP outsources nd results to the CP for prediction, which
costs 16nd · κ0 bits. Once receiving nd results, the CP inter-
acts with this patient to make the judgement, which costs
28nd · κ0 bits.

3) Comparison: We give the comparison of communication
overhead for our EPDP and the PPCD [27] in Table III. Note
that κ0 is the security parameter of OU and Paillier cryptosys-
tems, κ2 is the bit length of the hash value, |S| is the number
of the elements in set S such that |S| ≤ nd and |G| (|GT |) is
the bit length of the element in the group G (GT ). From the
table, we can see the communication overhead of our EPDP is
much less than that of the PPCD. The details will be described
in Section VI-C.

C. Simulation

In this section, we conduct the experiments in Java running
on the MacBook Pro with one 2.3-GHz Intel Core i5 and
8-GB memory. Similar to [27], we consider two datasets. One
real dataset is used from the UCI machine learning repository
called acute inflammations dataset (AID) [38]. We use the
AID to test the accuracy of the prediction for our EPDP and
the performance of our EPDP and the PPCD [27] in terms of
computational and communication overheads. We also use the
synthetic dataset to test all factors affecting the performance
of both schemes.

1) Simulation Setup: In the simulation, we set the secu-
rity parameter κ0 for both OU and Paillier cryptosystems as
κ0 = 512. We apply the RSA-OAEP for the secure public-key
cryptosystem, where the RSA modulus is set to 1024 bits. We
choose AES-256 and HMAC-SHA1 as the symmetric encryp-
tion algorithm SE(λ, ·) and keyed cryptographic hash function
H(λ, ·), respectively, i.e., κ1 = 256 and κ2 = 160. For the
bilinear pairing parameters in the PPCD, we choose type A
elliptic curve with 512-bits base field size [39]. Based on the
analysis for (3), we set f = 88 and L = 227 so that the BF
can contain up to 220 elements and the corresponding false
positive probability is about 10−27. Besides, the details of two
datasets are described as follows.

a) Real Dataset (AID): The AID was created by a medi-
cal expert as a dataset to test the expert system, which
contains 120 instances used to perform the presump-
tive diagnosis of two diseases of the urinary system.
Each instance contains six symptom attributes and two
diseases [inflammation of urinary bladder (IUB) and
nephritis of renal pelvis origin (NRPU)], i.e., ns = 6
and nd = 2. We use first 80 instances for disease model
training and the remaining 40 instances for disease risk
prediction.

b) Synthetic Dataset: In order to test all the factors that
affect both schemes, we use the synthetic dataset to test.
The randomly generated synthetic dataset consists of
500 tuples with 10 attributes. The value of each element
is randomly picked either 0 or 1. There are three fac-
tors which affect the total running time of both schemes:
a) the number of historical medical data (l); b) the num-
ber of symptom attributes (ns); and c) the number of
diseases categories (nd).

2) Simulation Results: The accuracy of the disease risk
prediction for our EPDP over the AID is shown in Table IV.
From the table, we can see that 40 instances used for prediction
can be successfully classified. Besides, we test the efficiency
about our EPDP and the PPCD [27] in terms of computational
costs and communication overhead, which is given in Table V.
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TABLE IV
ACCURACY OF DISEASE RISK PREDICTION

FOR OUR EPDP OVER THE AID

TABLE V
EFFICIENCY COMPARISON OVER THE AID

Fig. 3. Statistics of disease prediction.

From the table, we can see that the efficiency of our EPDP
is much better than that of the PPCD, especially in the phase
of disease risk prediction. As described in Section IV-C3, in
addition to completing the disease diagnosis on behalf of the
HP, the CP can also help the HP to collect statistical infor-
mation based on the prediction results. In more details, Fig. 3
shows the statistical information of the predicted prevalence
among undiagnosed patients. From the figure, we can see that
the number of patients suffering from NRPU is higher than
the number of patients suffering from IUB. After obtaining
this result, the HP can give some useful suggestion to the rel-
evant institutions, for example, it can suggest the pharmacy to
prepare more drugs for the NRPU.

In the simulation of the synthetic dataset, we consider the
computational cost and communication overhead for our EPDP
and the PPCD [27] varying with the number of symptom
attributes ns, the number of disease categories nd, and the
number of historical medical data l. Specifically, we depict
the comparison of computational cost for our EPDP and the
PPCD [27] in Fig. 4. It is shown that the computational costs
of our EPDP are much less than that of the PPCD. The reason
is that in the phase of disease model training, we use a super-
increasing sequence vector a to compress (ns + nd + nsnd)

encrypted operations into three, which also largely reduces
related computational costs, e.g., aggregation and decryp-
tion operations. Besides, our EPDP uses the BF technique to
predict the disease risk, as described in Algorithm 3, which

only needs to perform the efficient membership query opera-
tion. However, the PPCD executes a great number of secure
multiplication (SM) protocol [40], which needs to pay a high
computational price. Note that only the overhead of disease
model training is influenced by l, so when l changes, we only
plot the computational cost of training phase in Fig. 4(c).

In Fig. 5, we plot the comparison of communication over-
head for our EPDP and the PPCD [27] in terms of ns, nd, and l.
It is shown that the communication overheads for our EPDP
are much less than the PPCD. Specifically speaking, in the
phase of disease model training, each confirmed patient only
needs to send three compressed ciphertexts in our EPDP with-
out being affected by ns and nd, but the PPCD requires each
confirmed patient to transmit (nsnd + ns + nd) ciphertexts. In
the phase of disease risk prediction, our EPDP only needs the
CP to perform the membership query operation QueryBFk(·)
to complete the disease prediction, which does not need any
interaction operations compared with the PPCD.

Based on the above analyses, our EPDP can achieve effi-
cient and acceptable computing and communication, which is
more suitable for real-time e-healthcare environment than the
PPCD [27].

VII. RELATED WORKS

Disease risk prediction has been widely investi-
gated [41]–[43], since it can significantly facilitate patients
and HPs, for example, empower patients to manage their
own health, reduce office visits to get results, and improve
decisions, etc. However, these works do not consider the
privacy-preserving issue, which is a necessary factor in
the disease risk prediction research [44], [45]. Therefore,
it is preferred to design a privacy-preserving disease risk
prediction scheme.

Recently, many privacy-preserving disease risk prediction
schemes have been proposed. For example, Wang et al. [46]
presented a feasible privacy-preserving single-layer perceptron
scheme to obtain the disease model. Vaidya et al. first sug-
gested the privacy-preserving naïve Bayesian classifier in [47].
Rahulamathavan et al. [22] proposed a privacy-preserving
clinical decision support system using a Gaussian kernel-
based support vector machine. However, these schemes only
deal with the phase of disease model training. In order
to achieve the privacy-preserving disease prediction, some
similarity matching or statistic analysis technologies have
been conducted. For instance, Wang et al. [28] advised the
smartphone-based preclinical guidance scheme to provide
the disease risk diagnosis. Zhou et al. [4] gave a secure
and efficient privacy-preserving dynamic medical text mining
and image feature extraction scheme. Shemeikka et al. [48]
discussed computer-based decision-support systems to assist
intensive care unit physicians to manage the infectious dis-
eases. Nevertheless, these schemes did not take the disease
model training into consideration. Obviously, the aforemen-
tioned works achieved either the privacy-preserving disease
model training or the privacy-preserving disease prediction,
but not both parts. The direct combination of the above
schemes seems difficult to apply in the disease risk prediction,
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(a) (b) (c)

Fig. 4. Comparison of computational cost between our EPDP and the PPCD [27]. (a) nd = 5 and l = 100. (b) ns = 2 and l = 100. (c) ns = 2 and nd = 5.

(a) (b) (c)

Fig. 5. Comparison of communication overhead between our EPDP and the PPCD [27]. (a) nd = 5 and l = 100. (b) ns = 2 and l = 100. (c) ns = 2 and
nd = 5.

because the prediction methods corresponding to different
training methods are also different, let alone operate in the
ciphertext domain. That is, these works cannot achieve the
comprehensiveness described in Section I. To address this dis-
advantage, Liu et al. [27] presented a new privacy-preserving
patient-centric clinical decision support system. This scheme
utilizes the naïve Bayesian classifier [23], [37] to complete the
disease model training and the SM protocol [40] to predict
disease. However, owing to the time-consuming pairing tech-
nology [49] and Paillier encryption algorithm [29]–[32], the
computational and communication overheads are relatively
high, which is not suitable for the real-time e-healthcare,
especially medical emergency. Conceivably, existing schemes
do not achieve comprehensiveness, efficiency and privacy-
preservation at the same time. This gap motivates our work in
this paper.

VIII. CONCLUSION

In this paper, we have proposed an efficient and privacy-
preserving disease risk prediction scheme in e-healthcare,
named EPDP. First, the OU cryptosystem has been used to pro-
tect the privacy, which serves as the basis of our EPDP. Then,
a super-increasing sequence has been introduced to reduce the
computational and communication overheads, and the symp-
tom vector set of each disease is extracted by taking advantage
of naïve Bayesian classifier in the phase of disease model
training. Finally, based on the extracted symptom vector sets,

the disease prediction result is obtained by using the efficient
BF technique. Detailed privacy analysis shows that our EPDP
really achieves the privacy requirements of MUs and the HP
in the honest-but-curious model. Furthermore, extensive simu-
lations demonstrate that our EPDP is much more efficient than
the existing competing scheme in terms of the computational
and communication overheads, and hence our EPDP is more
suitable for the real-time e-healthcare environment, especially
medical emergency.

Future research includes achieving the message integrity in
e-healthcare since it directly influences the accuracy of diagno-
sis results and even the life safety of patients. Besides, MUs
may be unfamiliar with the diagnosed diseases due to lack
of the professional knowledge. Therefore, they can authorize
some medical professionals to access the prediction results for
further guidance of medical care. That is, how to achieve the
access control will also be our future work.
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